
Bot Detection Leveraging Image Techniques

Faculty of Information Engineering, Computer Science and Statistics
Master’s Degree in Computer Science

Edoardo Di Paolo
ID number 1728334

Advisor
Prof. Angelo Spognardi

Academic Year 2021/2022

Bot Detection Leveraging Image Techniques
Sapienza University of Rome

© 2022 Edoardo Di Paolo. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: dipaolo.1728334@studenti.uniroma1.it

mailto:dipaolo.1728334@studenti.uniroma1.it

A me.

v

Abstract

In the last decade there has been an evolution of Online Social Networks
(OSNs). These OSNs allow users to discuss trending topics, exchange opinions
and to interact with many other people but they also allowed the sharing of
fake news.
The spreading of fake news has grown exponentially; this has directly affected
part of society with changes of opinion about important topics. Often the
spreading of fake news occurs as a "mass sharing" carried out not by real human
account, but by many bots. In this study, a bot is also referred as a "Twitter
bot" that is an account that performs actions such as tweeting, re-tweeting,
following and liking automatically.
In this thesis, existing approaches regarding the bot classification will be shown
and a new method of classification using images is presented. The images
created are based on the users’ DNA sequences that are strings based on a
pre-selected alphabet. After the images were generated, a transfer learning
approach with different pre-trained models was used to evaluate the effectiveness
of the proposed method. The results obtained by this new approach are in line
with those of the state of the art and, in some cases, are even better.

vii

Contents

1 Introduction 1
1.1 Thesis structure . 3

2 Related work 5
2.1 Bot detection . 5

2.1.1 DNA approaches . 6
2.1.2 Other approaches . 7

2.2 Images recognition . 8
2.3 Observations . 10

3 A novel approach 11
3.1 Background . 11
3.2 Pre-trained networks . 14
3.3 Images classification for bot detection 16

3.3.1 General idea . 17

4 Experiments and Results 25
4.1 Metrics used . 25
4.2 Cresci 2017 . 27
4.3 Cresci stock 2018 . 28
4.4 Cresci rtbust 2019 . 29
4.5 TwiBot20 . 30
4.6 Overall results and discussion . 34

5 Conclusions 37

Ringraziamenti 39

1

Chapter 1

Introduction

In the last decade there has been an evolution of Online Social Networks
(OSNs). These OSNs allow users to discuss trending topics, exchange opinions
and to interact with many other people. Some examples of OSNs are Twitter,
Facebook and Instagram. In this thesis Twitter will be taken as the OSN of
reference.

In parallel with the growth of these OSNs, the spreading of fake news has
grown exponentially; this has directly affected part of society with changes
of opinion about important topics. Often the spreading occurs as a "mass
sharing" carried out not by real human account, but by many bots. A bot is
a software that runs automated tasks over the Internet; in this thesis a bot is
also referred as a "Twitter bot" that is an account that performs actions such
as tweeting, re-tweeting, following and liking automatically. In recent years,
the topic of bots on OSNs has risen in both the academic research world and
the media world and, for example, the $44 billion deal to acquire Twitter
has fallen through due to the unknown number of bots that are on the social.
Fukuda et al. estimated, with a method based on a random walk, that, in
2021, the bot population on Twitter is between 8% and 18% [14]. However,
these results are hard to obtain since Twitter’s APIs are limited and do not
offer a call that indicates whether a user is a bot or not; thus, it is impossible
to report an exact percentage.

With the evolution of OSNs, the bot classification has become a crucial
task; for example, Antenore et al. [3] analyzed the proliferation of fake news
during the COVID-19 pandemic and some bot detection models.

The study done in this thesis aims to provide a possible new functional

2 1. Introduction

approach to bot classification leveraging the remarkable advancements in image
recognition. Indeed, as far as this task is considered, there is no approach
that uses images. Nowadays, image classification is a widely studied and used
task, and thanks to convolutional neural networks, it is possible to achieve
amazing results. The general idea in the thesis is to exploit the potential of
CNNs to classify accounts by passing in input images representing users. In
fact, the assumption is that images of bot accounts are similar to each other
and different from those of real accounts. The proposed novel approach is
built on user extracted digital DNA sequences. After having all the DNA
sequences, based on a predetermined alphabet, each symbol is assigned to a
color and then each image’s pixel represent one symbol of the sequence. Finally
pre-trained networks were used over the generated images. Some examples of
CNNs used are the ResNet50, VGG16 and WideResNet50. A further step was
to consider the features set of an account along with the images in order to
improve the promising results; therefore, it was tried to combine DNA-based
images with account features. Sun et al. [30] proposed the SuperTML method,
which uses the idea of Super Characters [29] and two-dimensional embeddings
to address the problem of classification on tabular data. It was exploited in
the bot classification task to check whether it works or not.

1.1 Thesis structure 3

1.1 Thesis structure

In Chapter 2, existing approaches employed in bot/human classification of
Twitter accounts are analyzed. In addition, there will be references to papers
regarding image recognition in general.
In Chapter 3, the novel approach with a background is proposed. Moreover
it is presented the theoretical and practical implementation.
InChapter 4, the benchmarked datasets are presented and the results obtained
are reported.
In Chapter 5, there are the conclusions and some possible future directions
regarding the bot detection.

5

Chapter 2

Related work

In this chapter will be presented some of the most popular methods used
in the bot classification task. These methods will be analyzed and will be
reported some of the results that the authors obtained on the datasets that
they benchmarked. In addition, there is a section regarding image recognition
in which some of the most important papers are reported.

2.1 Bot detection

The bot detection problem has been going on for more than a decade. In fact,
the exponential growth in the use of OSNs has made bots a problem to be
solved. One of the first attempts, if not the first, reported in the literature is
presented in [39] in which the authors tried to detect spammers on Twitter
based on the individual charactersitics of the users. Approaches based on
supervised learning have been developed over the years, and since the thesis
work is also based on this, some related techniques will be seen more in detail
in this chapter. However, there are approaches based on unsupervised learning.
In these the aim is to detect not only a user as a bot, but rather to detect
groups of bots. Chavoshi et al. [5] proposed a bot detection system that works
on activity correlation without requiring labeled data. This approach detects
thousands of bots per day with an high precision equal to 94%.

One of the problems related to supervised learning is that there is a need
to manually label accounts in the dataset. It is also increasingly complicated
to recognize some bot accounts since they are more and more similar to valid
accounts. So, it has become even more important to create approaches that
can adapt to this continuous evolution as proven by the new TwiBot20 [12]
dataset, published in 2020: approaches that on previous datasets had 90%

6 2. Related work

of accuracy, on TwiBot20 only achieve 70%. The largest dataset concerning
Twitter is the one presented in [13]. It is a graph-based dataset with more than
1 million of accounts labelled as human or bot. Usually, bot detection datasets
rely on manual annotation or crowdsourcing such as in the work of Gilani et
al. [15] which assigned with a human annotation task the groundtruth for
each sample. In TwiBot22 the authors in a first moment invited bot detection
experts to annotate 1000 accounts and then, with the help of some model, they
generated the annotations with the help Snorkel [25].

Antenore et al. [3] analyzed the proliferation of fake news during the
COVID-19 pandemic and compared some bot detection models. The results of
the different approaches reported in this study will be taken as reference in
this thesis.

The next sections will report some of the approaches related to the digital
DNA, which have been widely used, and other approaches from which some
ideas have been taken. Moreover, some of the most important work on image
recognition are reported.

2.1.1 DNA approaches

A new and innovative approach was proposed by Cresci et al. in [8]. The study
done in this paper is the basis for the work done during the thesis period.

The biological DNA contains the genetic information of a living being and
is represented by a sequence which uses 4 characters representing the four
nucleotide bases: A (adenine), C (cytosine), G (guanine) and T (thymine).
The digital DNA is the counterpart of biological DNA and, in this case,
represents the actions of a given Twitter account. To give a general idea of
the proposed study, an account’s digital DNA is a sequence consisting of L
characters taken from a predefined alphabet. The latter is formally defined as
B and it contains different symbols; mathematically B is defined as follows:

B = { σ1, σ2, σ3, ..., σN}, σi 6= σj ∀i, j = 1, ..., N ∧ i 6= j (2.1)

In Equation 2.1 each σ is a symbol of the alphabet and a digital DNA
sequence will be defined as follow:

s = (σ1, σ2, ..., σn), σi ∈ B ∀ i = 1, ..., n (2.2)

Each symbol in the sequence denotes a type of actions; in fact, it is possible to

2.1 Bot detection 7

define, for example, an alphabet based on the types of tweet:

Btype =


A = tweet,
C = reply,
T = retweet

 (2.3)

and an example of sequence could be s = ACCCTAAACCCCCCTT.... In
this way, the account information is represented by a compact notation. Then,
they leveraged the LCS (longest common substring) curves to detect social
spambots and they reached very good results, like MCC of 0.952 and 0.955 on
a dataset with genuine accounts and retweeters of the political candidate, and
MCC of 0.867 and 0.940 on a dataset with genuine accounts and spammers of
Amazon products.

Another study based on the idea of digital DNA sequence is proposed
by Gilmary et al. [16], who splitted the sequences into fragments and then
calculated the entropy through tf-idf for all unique DNA fragments. They
reported that this approach achieved an average accuracy of 0.9357 on a new
real-world Twitter dataset containing 2000 accounts with 994 bots and 1006
humans.

2.1.2 Other approaches

Hayawi et al. [17] proposed in their study a new framework called "DeeProBot"
which stands for Deep Profile-based Bot detection. They used only the user
profile-based features (i.e. the username’s length and the number of followers)
in order to classify accounts with a LSTM (long short-term memory) network.
This approach achieved 0.97 of AUC as the best result.

Another work, presented by Shaghayegh et al., uses a generative adversarial
network associated with an LSTM network. In this approach, they used GANs
to generate bot samples to obtain more information about their behavior. The
results achieved by this approach are 0.951 of accuracy, 0.932 of recall, 0.987
of precision and 0.958 of F1 score on the Cresci et al. [7] dataset.

There are also approaches based on graph neural networks. These techniques
interpret a social network as graphs: for example, two users are two nodes
in a graph, and the edge would be the "following" relationship between them.
Alhosseini et al. [1] assumed that in addition to the account features, the
social graph must be taken in consideration so that we can find possible hidden
patterns between bots. They obtained, on the dataset in [35], an area below
the ROC curve of 94% which is 8% and 16% higher than the multi layer

8 2. Related work

perceptron and belief propagation methods that they compared.
Efthimion et al. [10] proposed an approach to identify Twitter bot accounts.

They used complex machine learning algorithm exploiting a range of features
such as the length of usernames, the reposting rate, some temporal patterns
and the similarity of message contents based on Levenshtein distance.

Botometer [37] is an online tool that determines a probability that a given
account is a bot or not. Since 2016, it is also considered among the state of the
art bot detection models; it exploits 1000 different features and it is trained
on different type of data. One of the sources was collected by Lee et al. [22]
who used different Twitter honeypots that resulted in the harvesting of 36.000
possible bots.

Yang et al. [36], through an empirical study, proposed a list of possible
features to exploit for the bot detection and some of them will be used in the
experiments done during the thesis.

Another approach, called RoSGAS (Reinforced and Self-supervised GNN
Architecture Search), is presented in [38]. In this case the authors proposed
an approach based on a multi-agent deep reinforcement learning. There are
also approaches in the literature based on NLP, Natural Language Processing.
The purpose of NLP is to make a computer able to understand the content
of any text, and research in this field is widely advanced. In [21] the authors
proposed a deep neural network based on a LSTM architecture that exploits
also the text of tweets. Often, the textual content of tweets created by bot
accounts is similar to each other, and therefore, analysis of these can help
the account classification. However, as NLP research as evolved, bot texts
have also evolved in terms of complexity and meaningfulness. Also in [33] the
authors proposed a text-based approach in which they used a bidirectional
LSTM and achieved good results on the Cresci-2017 dataset: 0.94 in precision,
0.97 in recall, 0.96 in accuracy and 0.96 in F1 score.

2.2 Images recognition

One of the areas of computer science that has evolved the most in the past
years is definitely what concerns image recognition. For humans, images are a
powerful tool for communication, and therefore, making a computer efficent
and accurate in image recognition is an important task. Image recognition is a
part of the computer vision that deals with the identification and classification
of objects in images. In particular, the goal of image recognition is to assign

2.2 Images recognition 9

categories to images.
The first attempts to recognize letters, numbers and symbols dates back as

far as the 1960s [2]. With the advancement of technology, it was possible to
create models that are able to recognize objects in images and much more.

One of the first model developed for image recognition was the AlexNet
[20] in 2012. Krizhevsky et al. trained a large, deep neural network to classify
the ImageNet [9] dataset and they improved the state of the art. ImageNet is
an image database with 1000 different categories that is used as a benchmark
for convolutional neural networks (CNNs). These CNNs are discussed in detail
in [24] and in the next chapter of this thesis.

Over the years, new architectures have been proposed that have further
improved the results1 on ImageNet.

VGG [27] is a convolutional network architecture proposed in 2015. The
authors investigated the effect of the convolutional network depth on its
accuracy on the ImageNet dataset and proposed an architecture with very
smal convolutional filters. They reached 0.745 in accuracy.

InceptionV3 [31] is an architecture proposed in 2015 and it was also bench-
marked on ImageNet. Szegedy et al. explored ways to scale up the architectures
withouth burdening the performance of the models. In this case they improved
the state-of-the-art at that time reaching an accuracy equal to 0.78.

Other improvements were achieved through Residual Networks [18] in which
the accuracy on ImageNet improved to 0.809. This work is one of the most
important in the field of computer vision since the authors reformulated the
layers as learning residual functions.

In 2019 EfficientNet [32], another architecture, reached 0.869. Tan et al.
proposed a new scaling method that uniformly scales all dimensions of depth,
width or resolution using a simple compound coefficient φ.

As seen, there are many deep learning models in the literature that have
achieved amazing results in image recognition. However, one of the main
problems that plagues these architectures is the overfitting [40]. Overfitting
occurs on limited datasets since the model fails to generalize the data. To
avoid this problem, there is the Data Augmentation [26]. The latter consists
of a series of algorithms that allow for enhanced training on the data that a
network uses to learn.

The study of this thesis made use of the transfer learning, which is discussed
more in detail in the next chapter. Weiss et al. [34] formally defined the transfer

1List of benchmarks on ImageNet.

https://paperswithcode.com/sota/image-classification-on-imagenet

10 2. Related work

learning and reported some possible scenario in which it is useful to exploit the
potential of this technique. Moreover, the transfer learning helps to prevent
overfitting during the training [26].

2.3 Observations

The approaches regarding the bot detection, which are presented in this
Chapter, are certainly valid. However, with the evolution of Computer Science
in fields such as artificial intelligence, some models have become obsolete since
they can no longer detect evolved bots. One of the most important works
in bot detection is definitely the digital DNA [8], from which all the work
done during the thesis period is based. The LCSs curves, used in digital DNA,
struggle to scale in datasets such as [12, 13] since there are too much samples.
This problem, through the use of images, does not arise since image recognition
can also be done on millions of images.

In bot detection there is a wide use of pure machine learning [10, 36, 37]. As
bots evolve, considering only a set of features and creating a machine learning
model is no longer sufficient. It is more and more important to consider the
relationships between users [1]. Graph-based approaches, in future, will always
get very good results, and research in general is moving toward this type of
approach.

As for text-based approaches [21, 33], these will also need to be updated.
The texts of bot-generated tweets nowadays can be mistaken for those of real
accounts. Therefore, it will be necessary to integrate the use of, for example,
features regarding users to these approaches.

11

Chapter 3

A novel approach

In this chapter the approaches developed during the thesis period will be
reported. In addition, the fundamental concepts behind the work done will be
explained.

3.1 Background

The approaches proposed in this thesis make use of the Convolutional Neural
Networks (CNNs). These CNNs have had remarkable advancements in recent
years, that is why they are exploited in the thesis.

Figure 3.1. CNN architecture example.

Figure 3.1 shows an architecture for a CNN. In this example, the neural
network is trained to classify handwritten digits into 10 different classes ranging

12 3. A novel approach

from 0 to 9. The input, as it is possible to see, is an image with 28x28 as width
and height and with 1 dimension, so it is in gray-scale; if it was an RGB image
there would be 3 dimensions: one for red, one for green and one for blue. This
image will pass different convolutional layers. Convolutional layers make
use of what is called convolution that is a mathematical operation:

(f ∗ g)(t) =
∫
f(τ)g(t− τ) dτ (3.1)

In Equation 3.1, f and g are two functions and the results of the convolution
between these two will be a third function. This new function will be the
integral of the product of the two functions after one is reflected and shifted.
In CNNs, it is possible to refer to the discrete version of the convolution that
is defined as follow:

f [m,n] =
∑
k,l

I[m− k, n− l]g[k, l] (3.2)

In Equation 3.2 f will be the "filtered" image and I is the image given in
input to the layer. The function g represents the kernel; it is a small matrix
used for example to blur the image in input.

(a) Original Lena image (b) Lena blurred image (c) Lena sharpened image

Figure 3.2. Examples of kernel functions applied to a 2D image.

In Figure 3.2 it is possible to see some kernel applied to the first image,
and they are the following:

1 2 1
2 4 2
1 2 1


(a) Blur kernel matrix.

 0 −1 0
−1 5 −1
0 −1 0


(b) Sharpen kernel matrix.

When the input is processed by a convolutional layer, it is possible to
add an amount of pixels; this is the padding. In addition to the padding,

3.1 Background 13

it is possible to specify the stride parameter, that represents the amount of
movement over the input. The size of output from a convolutional layer is
given by the following formula:

Wout = W −K + 2P
S

+ 1 (3.3)

In Equation 3.3, W is the width (or the height if W = H), K is the kernel
size, P the padding and S is the stride.

After the convolutional layer, in Figure 3.1, there is a pooling layer. The
pooling layer is used to downsample the given input and there are different
pooling functions that can be used in this step.

Figure 3.4. Max pooling layer example.

Figure 3.4 is an example of the max pooling with a kernel with 2 x 2 as
dimensions and with a stride of 2. As it is possible to see, the left table is the
input and the output will be a downsampled table with the max values in each
2x2 table. The size of the output is determined by the following formula:

Wout = W −K
S

+ 1 (3.4)

In Equation 3.4, W is the width (or the height if W = H), K the kernel size
and S the stride.

At the end, there are the fully connected layers and they are the last layers
in the entire architecture. In this step, it is possible to use some activation
function like the ReLU or the softmax.

ReLU: f(x) = max(0, x)
softmax: σj(z) = ezj∑K

k=1 e
zk
∀j = 1, ..., K. (3.5)

14 3. A novel approach

Another technique used in this study, is the transfer learning. Training a
CNN from scratch, initially with randomly weights, is a difficult process since
it requires high-performance hardware. In order to avoid the step of training
from scratch, it is common to use some pre-trained networks on a very large
dataset such as ImageNet [9] which has more than 1 million of images and
1000 different categories.

In this work the transfer learning technique was used in two ways:

• fixed feature extractor: in this case the last fully connected layer of
the network is replaced by a layer that has in input the number of features
in output from the previous layer and 2 (the number of classes needed).
The weights are freezed for all the layers except for the last one;

• fine tuning: this is similar to the previous one, but here the weights are
not freezed and they are "fine-tuned" during the training on the custom
dataset.

These ways of proceeding were tried during the thesis work and will be
discussed in the following sections in detail.

3.2 Pre-trained networks

In this section, the pre-trained networks used during the thesis will be presented.

Inception_V3 This neural network is also known as "GoogleNetv3" [31] and
is trained on ImageNet. The architecture is in Table 3.1. The structure of an
inception block is represented in Figure 3.5.

Figure 3.5. Inception block structure.

3.2 Pre-trained networks 15

layer type patch size/stride
or remarks input size

conv 3x3/2 299x299x3
conv 3x3/1 149x149x32

conv padded 3x3/1 147x147x32
pool 3x3/2 147x147x64
conv 3x3/1 73x73x64
conv 3x3/2 71x71x80
conv 3x3/1 35x35x192

3 x Inception block 3x3/1 35x35x288
5 x Inception block 3x3/1 17x17x768
2 x Inception block 3x3/1 8x8x1280

pool 8x8 8x8x2048
linear logits 1x1x2048

softmax classifier 1x1x1000

Table 3.1. Inception V3 architecture.

ResNet Multiple models based on the ResNet architecture were tested during
the thesis, and these are: ResNet50, WideResNet50 and ResNet152. The
ResNet model is based on the work presented in [18] in which the authors
proposed a residual learning framework to ease the training of networks with
many layers. These residual networks, typically, have layers that contains the
ReLU (Equation 3.5) as activation function and some batch normalization
layer which is useful to speed up the training phase and to provide some
regularization. In Figure 3.6 it is possible to see a regular block, the left
one, in which the mapping function f(x) is directly learned inside the dotted
line box while, the right one, is a residual block used in ResNets and here
f(x) = g(x) + x.

VGG16 Another model used in this study is the VGG16 proposed in [27].
This model is trained on ImageNet and in Figure 3.7 it is possible to see the
network’s architecture in which there are convolutional layer with the ReLU,
max pooling layers, fully connected layers and at the end the softmax.

EfficientNet The last architecture used in this study is an EfficientNet. They
were proposed in [32] and they achieved the state-of-the-art accuracy.

16 3. A novel approach

Figure 3.6. A regular block (left) and a residual block (right).

Figure 3.7. VGG16 architecture.

3.3 Images classification for bot detection

In this section will be presented the novel approach proposed for the bot
classification task. In particular, in this study the remarkable advancements in
image classification have been exploited in order to correctly classify the bots.

3.3 Images classification for bot detection 17

Moreover, some python functions, used in images creation, will be described.

3.3.1 General idea

At the moment, there are no approaches in the literature that take advantage
of images and of convolutional neural networks to classify bots. The idea
behind all the work done during the thesis comes from the digital DNA [8].
This novel approach is based on transforming each user’s DNA sequence into
an image. The hypothesis is that the behaviors and actions of bots have certain
patterns that are different from that of real accounts and that, through the
use of images, it is possible to discover them.

Images algorithm

One of the difficulties encountered during the thesis work was figuring out
an efficient algorithm that could transform a string into two dimensions. In
particular, the aim was to create images that did not lose the value of DNA
strings and, moreover, there are few DNA-to-image conversion algorithms in
the literature. One of them is called "Chaos Game Representation" [19], but
it was not fully exploited in the thesis since the preliminary results were not
entirely sufficient.

Figure 3.8. Chaos Game Representation algorithm.

Figure 3.8 shows how the algorithm works: each vertex of the image
represents a letter. Suppose the first letter in our sequence is a C, as in the
example, this will be placed halfway between vertex C and the center. The
second letter in the example is a G, and this will be placed at half the distance

18 3. A novel approach

between the current point of C and the vertex of G. The algorithm will end
once the entire sequence has been read.

(a) A human with CGR representation. (b) A bot with CGR representation.

Figure 3.9. Examples of the images generated with CGR.

In Figure 3.9 there are two images based on the "Chaos Game Represen-
tation" approach. As it is possible to see there is some pattern, but they are
similar between bot and human and so a good classification will be too hard
to obtain. Moreover, since the alphabet that is used in the DNA sequences has
only 3 characters (A = tweet, C = reply and T = retweet), the images will be
created based on only 3 vertices and not 4. However, with some changes in
the algorithm, (i.e. being able to create images with more specific patterns,
use a different alphabet), it can be better exploited.

Another algorithm tried to convert DNA sequences into images was the
one presented by Somodevilla et al. in [28]. They proposed an approach in
which there is a matrix of dimension NxN where N is the length of the DNA
sequence and for each row there is the entire sequence. For example, suppose
that there is the need to represent in image the following sequence: ACTACT .
So the matrix will be:



1 2 3 4 5 6
1 A C T A C T

2 A C T A C T

3 A C T A C T

4 A C T A C T

5 A C T A C T

6 A C T A C T


(3.6)

3.3 Images classification for bot detection 19

Then, once a color has been assigned for each letter, the image is created.
Unfortunately, this algorithm was not scalable in the case of bot classification;
in fact, often there are DNA sequences longer than 1000 characters and thus
would result in images with dimensions greater than 1000x1000. Obviously,
such images require too much effort to be classified, so this algorithm was also
discarded for the prosecution of this thesis.

The idea behind the algorithm used in this work comes from the two
algorithms previously shown and it consists to "unroll" the string in 2 dimensions.
In Algorithm 1 there is the pseudocode for the images creation. Since neural
networks expect images with the same size, it was decided to take the string
of maximum length and check whether this was a perfect square. In case it
was not a perfect square, the closest and strictly largest perfect square would
be calculated. By doing so, it was possible to represent all strings in images of
equal size; in fact, strings as long as 10000 characters could be represented in
images of size 100x100. After arbitrarily deciding on an RGB color to assign
to each symbol in the alphabet, the image is colored pixel by pixel based on
the current index. The coloring is done as long as the length of the input
string is not exceeded; therefore, in case where the sequence is not the one
with maximum length, it will result in a black part of the image. At the end,
the function will return the image for the given DNA sequence. All images
created are in grayscale; colored images were also tried but there was no major
improvement in the final results. Since multiple datasets were benchmarked,
images for each will be shown throughout this report. In order to avoid possible
overfitting during the training of the CNNs, it was decided to use a validation
dataset as well. In this way it was possible to check the validation and the
training losses during the training.

Implementation of the approach

This section describes the technologies used for the implementation of the
approach. In order to produce readable code, the PyTorch Lightning framework
[11] was used with regard to neural networks. It is a fully flexible framework
built on pure PyTorch and it allows to spend less time on engineering the code.
In addition, the framework was used jointly with WanDB [4] to keep track of
metrics.

One of the first classes defined in the framewok is the one concerning the
dataset management and in Listing 1 there is the code. This class initialize
the dataset and, in the init function, it applies the transforms (i.e. resizing,

20 3. A novel approach

Algorithm 1 Pseudocode images algorithm
Input: DNA sequence
Output: DNA image

1: n← DNA string length
2: if n is a perfect square then
3: L←

√
n

4: else
5: L← get_closest_square_number(n)
6: end if
7: I ← create_image(width = L, height = L)
8: P ← dictionary with keys the alphabet symbols and RGB colors as values
9: for row in range(L) do

10: for col in range(L) do
11: k ← (row * L) + col
12: if k < n then
13: I[row, col]← P [DNA[k]]
14: end if
15: end for
16: end for
17: return I

cropping and rotating). The random_split_dataset functions is a utility
function in order to split the dataset in three different sub-datasets: the
training dataset (60%), validation dataset (20%) and test dataset (20%). In
the classification task, the label 1 is referring to bots while the label 0 to
human accounts. In addition, a module that extends LightningDataModule
has been defined to handle batches of the datasets1 during the training phase.

In Listing 2 it is possible to see the core class of the implementation. Some
lines of code, concerning the functions of the metrics, have been omitted for
reasons of thesis formatting. The complete code is available on GitHub2. With
this class, the framework performs the main steps and it performs the forward
function. The functions training_step, validation_step, and test_step
are used to perform training, validation, and testing of the dataset respectively.
In each of these functions, loss computation takes place, and thus it is possible to
understand whether the model is learning and classifying correctly. Regarding
the loss function, the cross entropy was used during the work. It is used as
measure of the classification model in which the output is a probability between
0 and 1. Since the bot classification is a binary classification, the cross entropy
is calculated by the following formula:

1The code of this class is not reported in this relation, but it is available on GitHub.
2The full core class code is available here.

https://github.com/aedoardo/bdtip/blob/main/src/data/bdtip_datamodule.py
https://github.com/aedoardo/bdtip/blob/main/src/model/bot_classificator.py

3.3 Images classification for bot detection 21

Loss = −(y log(p) + (1− y) log(1− p)) (3.7)

In Equation 3.7, y is the binary indicator (bot or human) and p is the
probability.

In addition, there is all the code regarding the metrics that are sum-
marized in the next Chapter. The core class have also a function called
configure_optimizers; it is used to perform optimization of the models. The
optimizers used are available in the Colab Notebook available on GitHub3.
However, they are the Stochastic Gradient Descent (SGD) and the Adam
algorithm. In particular, parameters such as learning rate, momentum, weight
decay, step size and gamma were configured. In the Notebook there are also all
the datasets benchmarked that are reported in the next Chapter. In general,
models could perform training for at most 50 epochs but it was difficult for
them to complete all of them given the use of EarlyStopping. Through the
latter, in fact, the accuracy (or loss) of the validation set was monitored, and
in case it did not increase (or decrease in the case of loss) for a predetermined
number of epochs, the training would stop.

3The notebook is available here.

https://github.com/aedoardo/master-degree-thesis/blob/main/notebook/BDTIP_(PRO).ipynb

22 3. A novel approach

Dataset class in PyTorch Lightning.
1 class BotImagesDataset(Dataset):
2
3 def __init__(self, dataset_dir: str, transforms:

Optional[Compose] = None) -> None:↪→

4 self.dataset_dir: str = dataset_dir
5 self.labels: List[int] = [1 if _.split("_")[0] == "bot" else

0 for _ in os.listdir(dataset_dir)]↪→

6 self.images: List[str] = [_ for _ in
os.listdir(dataset_dir)]↪→

7 self.transforms: Optional[Compose] = transforms
8
9 def __len__(self):

10 return len(self.labels)
11
12 def __getitem__(self, index: int) -> Union[str, Tuple[int,

Tensor]]:↪→

13 if not 0 <= index < len(self.images):
14 return "Please provide a valid index."
15 image_path: str = os.path.join(self.dataset_dir,

self.images[index])↪→

16 image: Image.Image = Image.open(image_path)
17 label: int = self.labels[index]
18 if self.transforms:
19 image = self.transforms(image)
20 return image, label
21
22 def random_split_dataset(self, train_size: float = 0.6,

test_size: float = 0.2, val_size: Optional[float] = 0.2,
generator: Generator = default_generator) -> List[Subset]:

↪→

↪→

23 train_size = int(len(self.labels) * train_size)
24 test_size = int(len(self.labels) * test_size)
25
26 if val_size is not None: val_size = int(len(self.labels) *

val_size)↪→

27
28 if sum(filter(None, [train_size, test_size, val_size])) <

len(self.labels):↪→

29 train_size += len(self.labels) - sum(filter(None,
[train_size, test_size, val_size]))↪→

30 return random_split(self, generator=generator,
lengths=[train_size, test_size, val_size])↪→

Listing 1

3.3 Images classification for bot detection 23

BotClassificator class.
1 class BotClassificator(pl.LightningModule):
2
3 def __init__(self, hparams = {}, *args, **kwargs) -> None:
4 super().__init__(*args, **kwargs)
5 self.save_hyperparameters(hparams)
6 str_to_model = {} # dictionary with all models
7 self.model = str_to_model[hparams["model"]]()
8
9 def forward(self, x: torch.Tensor):

10 return self.model(x)
11
12 def training_step(self, batch, batch_nb):
13 x, y = batch
14 y_hat = self(x)
15 loss = F.cross_entropy(y_hat, y)
16 y_hat = torch.softmax(y_hat, -1)
17 output = torch.argmax(y_hat, dim=1)
18 y = y.cpu().numpy()
19 output = output.cpu().numpy()
20 accuracy = accuracy_score(y, output)
21 f1 = f1_score(y, output, average='macro')
22 recall = recall_score(y, output, average='macro',

zero_division=0)↪→

23 mcc = matthews_corrcoef(y, output)
24 precision = precision_score(y, output, zero_division=0,

average='macro')↪→

25 return loss
26
27 def validation_step(self, batch, batch_nb):
28 x, y = batch
29 y_hat = self(x)
30 loss = F.cross_entropy(y_hat, y)
31 y_hat = torch.softmax(y_hat, dim=-1)
32 output = torch.argmax(y_hat, dim=1)
33 y = y.cpu().numpy()
34 # calculation of metrics (like training_step)
35 return loss
36
37 def test_step(self, batch, batch_nb):
38 x, y = batch
39 y_hat = self(x)
40 loss = F.cross_entropy(y_hat, y)
41 y_hat = torch.softmax(y_hat, dim=-1)
42 output = torch.argmax(y_hat, dim=1)
43 y = y.cpu().numpy()
44 output = output.cpu().numpy()
45 # calculation of metrics (like training_step)
46
47 def configure_optimizers(self):
48 return self.model.configure_optimizers(self.hparams)

Listing 2

25

Chapter 4

Experiments and Results

In this Chapter, the datasets benchmarked and the results obtained will be
presented. For each dataset there will be a description and, in addition, some
of the images created will also be shown.

4.1 Metrics used

This section will report the metrics used to benchmark the different datasets
tested.

Accuracy score The accuracy is the proportion of correct predictions, con-
sidering both true positives and true negatives, among the total number of
samples. The formula used to calculate the accuracy is as follows:

TP + TN

TP + TN + FP + FN
(4.1)

where TP are the true positives, TN true negatives, FP false positives and
FN false negatives.

Precision score The precision is the ability of the classifier not to label as
positive a sample that is negative. The formula used to calculate the precision
is as follows:

TP

TP + FP
(4.2)

26 4. Experiments and Results

Recall score The recall is the ability of the classifier to find all the positive
samples. The formula used to calculate the recall is as follows:

TP

TP + FN
(4.3)

F1 score The F1 score is the harmonic mean of the precision and recall. The
formula used to calculate the F1 score is as follows:

2 · (precision · recall)
precision+ recall

(4.4)

Matthews correlation coefficient The Matthews correlation coefficient (or
ϕ coeffiecient) takes into account true and false positives and negatives and
is regarded as a balanced measure which can be used even if the classes are
of very different sizes. The formula used to calculate the ϕ coefficient is as
follows:

(TP · TN)− (FP · FN)√
(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)

(4.5)

These metrics will be used to show the effectiveness of the approach proposed
in this thesis in comparison with existing approaches.

4.2 Cresci 2017 27

4.2 Cresci 2017

It is a dataset presented in [7] and it contains genuine, traditional and social
spambot Twitter accounts. For each user there is the corresponding label,
human or bot. In Cresci 2017 there are 991 bots and 1083 users for a total
of 2074 samples. Before moving on to image creation, there was the need to
create the DNA sequences, and this function is in Listing 3. In this case, it was
used the alphabet called "B3 type". After all the DNA strings were generated,
the Algorithm 1 was used to create the images.

(a) A human account in image format. (b) A bot account in image format.

Figure 4.1. Examples of the images generated for Cresci 2017.

As it is possible to see, in Figure 4.1 there are two images: the left one
represents a human account, while the right one represents a bot account. It is
clearly visible that there is some kind of noise in Figure 4.1a that distinguishes
this account from that of a bot. The idea of the thesis is that a CNN would be
able to pick up these differences and thus be able to classify correctly accounts.
In [12] there are some results obtained on this dataset and they are: 0.98 in
accuracy, 0.98 in F1 score and 0.96 in the ϕ coefficient. With the approach
proposed in this thesis, the following results were obtained: 0.98 in accuracy,
0.98 in recall, 0.98 in F1 score and 0.98 in ϕ coefficient. The best model for
this dataset was the ResNet50, in which the loss decreased to 0.114.

Figure 4.2 shows the validation and training losses: as it is possible to see
the two losses have a similar behavior and they decrease until they stabilize
for a predetermined number of epochs. Since the model behaves similarly in
both validation and training set, there is no overfitting. However, the results
obtained with this dataset are in line with those of the state of the art and, in
the case of the ϕ coefficient, are even better.

28 4. Experiments and Results

(a) Validation loss on Cresci 2017. (b) Training loss on Cresci 2017.

Figure 4.2. Train and validation losses on Cresci 2017.

4.3 Cresci stock 2018

In this dataset [6] there are 6842 bots and 5882 users, for a total of 12724
samples labelled in human or bot. The function used to extract the digital
DNA is Listing 3. In Figure 4.3 it is possible to see two images:

• the left one: it has some noise and it seems a more "complicated" image.
In fact, it represents a human account;

• the right one: it is completly white except for the bottom which is black.
It is a simpler and cleaner image with respect to the first one and it
represents a bot.

(a) A human account in image format. (b) A bot account in image format.

Figure 4.3. Examples of the images generated for Cresci stock 2018.

In this case, the results in [3] will be taken as reference. Antenore et al.
reported as best results: 0.77 in accuracy, 0.96 in recall and 0.82 in F1 score.
With the novel approach, there has been a remarkable improvement in results.

4.4 Cresci rtbust 2019 29

Function used to create the DNA sequences.
1 def alphabet_b3_type(tweets_per_users) -> List[str]:
2 """
3 B3 type alphabet.
4 {
5 A <- tweet
6 C <- reply
7 T <- retweet.
8 }
9 """

10 users_dna_sequences = []
11 for user in tweets_per_users:
12 user_dna_sequence = ''
13 for tweet in tweets_per_users[user]:
14 if tweet['retweeted']:
15 user_dna_sequence += 'T'
16 elif tweet['in_reply_to_user_id']:
17 user_dna_sequence += 'C'
18 else:
19 user_dna_sequence += 'A'
20
21 users_dna_sequences.append({'user_id': user, 'dna':

user_dna_sequence})↪→

22 return users_dna_sequences

Listing 3

These results were obtained by the ResNet50 model and they are: 0.89 in
accuracy, 0.89 in recall, 0.88 in F1 score and 0.78 in ϕ coefficient.

As it is possible to see in Figure 4.4, the two losses have a similar behavior
and both decrease until the training is stopped.

4.4 Cresci rtbust 2019

Another benchmarked dataset is the cresci-rtbust-2019 presented in [23]. This
is a more recent dataset and thus it contains bots with behaviors more similar
to those of real accounts. In fact, both the state of the art and the results
obtained in this thesis are not like those of previous datasets. Cresci-rtbust-
2019 has 315 bots and 317 users, for a total of 632 samples. Certainly the
limited number of accounts collected affects the results.

In Figure 4.5 it is clearly visible that the image representing the bot is very
similar to that of a real account; thus it will be more complicated for a neural
network to find specific patterns related to only one of the two classes. In [3]

30 4. Experiments and Results

(a) Validation loss on Cresci stock 2018. (b) Training loss on Cresci stock 2018.

Figure 4.4. Train and validation losses on Cresci stock 2018.

(a) A human account in image format. (b) A bot account in image format.

Figure 4.5. Examples of the images generated for Cresci-rtbust-2019.

there are the results taken as reference: 0.58 in accuracy, 0.38 in recall and 0.47
in F1 score. The model that produced the best results is the WideResNet50,
in particular it achieved: 0.81 in accuracy, 0.79 in recall, 0.81 in F1 score
and 0.61 in ϕ coefficient.

4.5 TwiBot20

This is the most recent dataset benchmarked in this work. It is presented in [12]
and it contains 6561 bots and 5185 users for a total of 11746 labelled samples.
Nowadays, this is one of the most complete and up-to-date datasets available;
the behaviors of the bots are very similar to those of valid accounts, and
obtaining good results has not been easy. In fact, TwiBot20 has a maximum
of 200 tweets per user and, therefore, the images created were really too
small (15x15). Moreover, these images contain limited information that could

4.5 TwiBot20 31

highlight specific patterns among the bots. An initial attempt was to enlarge
the images, but the results obtained were not good.

(a) Human enlarged image. (b) Bot enlarged image.

Figure 4.6. Enlarged images in TwiBot20.

Figure 4.6 shows two examples of enlarged images. In Figure 4.7 there are
the accuracy and ϕ coefficient obtained in the experiment with this type of
images.

(a) Accuracy in first attempt on TwiBot20. (b) ϕ coefficient in first attempt on TwiBot20.

Figure 4.7. Training accuracy and ϕ coefficient in first attempt on TwiBot20.

As it is possible to see, the metrics are not the best. In fact, the accuracy
does not improve much, compared to the initial phase, and the ϕ coefficient
starts, even, from a negative value and then stabilizes just below 0.4. In detail,
the results obtained with these images were: 0.34 for the ϕ coefficient, 0.66
for the F1 score, 0.66 for the recall, 0.67 for the precision and 0.67 for the
accuracy.

At this point it was decided to consider not only digital DNA but also
a set of features including, for example, the username length, the number
of followers, and the number of tweets. In [30] the authors proposed the
SuperTML algorithm to represent tabular data (i.e. the features set) into
images. Since they had good results in their research and the approach seemed
to be interesting and effective, it was decided to try this approach. In detail,

32 4. Experiments and Results

Feature Description
statuses_count number of tweets
followers_count number of followers
friends_count number of friends
listed_count user’s lists count

default_profile if true the user has not changed the profile
favourites_count number of favourites

profile_use_background_image if user has a background image
verified if is a verified account

followers_growth_rate followers growth rate
friends_growth_rate friends growth rate

favourites_growth_rate favourites growth rate
listed_growth_rate listed growth rate

followers_friends_rate followers/friends rate
screen_name_length username length

screen_name_digits_count number of digits in username
description_length description length

description_digits_count number of digits in description
name_length name length

name_digits_count number of digits in name
total_tweets_chars_count number of chars in tweets

total_urls_in_tweets number of urls in tweets
total_mentions_in_tweets number of mentions in tweets

urls_tweets_rate urls/tweets rate
mentions_tweets_rate mentions/tweets rate

chars_tweets_rate chars/tweets rate
account_age account age

Table 4.1. List of features used.

Sun et al. achieved state-of-the-art results on both large and small datasets.
Some of the datasets that they used are the Iris dataset1 and the Higgs Boson
Machine Learning2.

To proceed with the implementation of this new approach, a list of possible
features to be used in images was compiled; these are summarized in Table 4.1.
As it is possible to see, the values of these features are combined with the
digital DNA image and the Figure 4.8 shows two images: the left one related
to a real account while the right one to a bot account. In both cases, the DNA
part of the image has been enlarged. The results taken as reference are in [12]
and they are: 0.81 in accuracy, 0.85 in F1 score and 0.67 in ϕ coefficient. This

1Iris dataset homepage.
2Higgs Boson Machine Learning challenge on Kaggle.

https://archive.ics.uci.edu/ml/datasets/iris
https://www.kaggle.com/c/higgs-boson

4.5 TwiBot20 33

(a) A human account in image format. (b) A bot account in image format.

Figure 4.8. Examples of the images generated for TwiBot20 with the SuperTML algorithm.

time, due to the limited amount of information regarding tweets in the dataset,
the result of the approach proposed in this thesis are close to those of the state
of the art: 0.82 in accuracy, 0.80 in recall, 0.80 in F1 score and 0.67 in ϕ
coefficient.

(a) Validation loss on TwiBot20. (b) Training loss on TwiBot20.

Figure 4.9. Train and validation losses on TwiBot20.

In Figure 4.9 it is possible to see the two losses that decrease until they
stabilize at about 0.6. The two losses have very similar behavior, which shows
that the model is not overfitting.

In this particular case, a positive evolution of the results obtained could be
seen; in fact the approach went from a 0.66 of accuracy to a value of 0.82, and
this indicates how important it is to have well-structured datasets. One thing
to point out is the fact that data on user relationships were not considered in
these experiments. In the future, if these user relationships are considered in
the approaches, better results can be achieved.

34 4. Experiments and Results

4.6 Overall results and discussion

The results obtained on the most common datasets are noticeable since they
improve the state of the art and Table 4.2 summarizes them and compares
them with what is the current state of the art.

cresci-17 cresci-stock cresci-rtbust TwiBot20

Antenore et al.

-
-
-
-

0.77
0.96
0.82
-

0.58
0.38
0.47
-

-
-
-
-

Feng et al.

0.98
-
0.98
0.96

-
-
-
-

-
-
-
-

0.81
-
0.85
0.67

Novel approach

0.98
0.98
0.98
0.98

0.89
0.88
0.89
0.78

0.81
0.79
0.81
0.61

0.81
0.80
0.80
0.67

Table 4.2. Comparison of obtained results with [3] and [12]. - indicates that the metric is
not available. The metrics reported are (from top to bottom): accuracy, recall, F1 score
and ϕ coefficient.

The proposed approach certainly has proven to be efficient and effective
obtaining promising results. Moreover, this is the first time that an image-
based method has been proposed regarding bot classification. However, as
can be seen some results could be further improved. In fact, since it is very
hard to produce complete datasets (OSNs often block scraping and the APIs
have a limited number of calls), it is necessary to take full advantage of the
available data. For example, the results obtained by the proposed approach on
the TwiBot dataset, which are still really promising, do not take into account
the relationships between users. The results will definitely improve.

However, it can be seen from Table 4.2, for example, how the results
regarding the Cresci-stock-2018 dataset are improved over those reported by
Antenore et al [3]. In fact, this dataset is probably the most complete among
those used, and this resulted in excellent image classification.

All the work was done on the Google Colab3, which provides GPUs to do
the training. However, the resources made available are often limited and it is
common to run into possible timeouts. Certainly having hardware that is not

3Google Colab website.

https://colab.research.google.com/

4.6 Overall results and discussion 35

too limited will help to improve the results and also to perform the training
on many more images, as might be the case with the TwiBot22 dataset [13].

37

Chapter 5

Conclusions

The bot classification task is becoming increasingly important as seen in the
case of Twitter’s acquisition. Since this failed deal was worth $44 billion,
efficient algorithms for bot detection can be worth a lot of money. Moreover,
research in this field is still open given the continuous evolution of these
accounts. The proposed approach could be further enhanced considering, for
example, even more specific techniques such as PCA (Principal Component
Analysis) regarding the features set to be used. However, in the future it will
also be necessary to take advantage of relationships between users in a OSN
because they are important data that should be exploited [1]. In fact, the
results obtained in this study do not consider these relationships. Idealizing
and creating models based not only on images but also on graphs could be
another step forward. Research in this area will be also helpful in creating
cleaner and safer networks, such as helping OSNs recommendation systems
to avoid advertising posts generated by bot accounts and thus limiting for
example the spreading of fake news. This study could also help to create new
approaches not only with regard to Twitter, the social that is taken most into
consideration in bot classification, but also others such as Reddit, Facebook
and Instagram. Moreover, these approaches in the future could be useful in
creating a tool, similar to botometer [37], that, in real time, is able to determine
whether a given account is a bot or not with a certain probability.

However, it will be necessary to create datasets with more data such as
TwiBot22 [13] so that approaches will be able to understand evolutions in
bot behaviors and, consequently, correctly classify accounts. It will also be
interesting to try to use future approaches based on the one proposed in this
thesis on datasets for unsupervised learning in order to try to clustering groups
of images. With unsupervised learning it will be possible to avoid all the

38 5. Conclusions

effort of manually annotating the datasets and at the same time obtain good
results in detecting groups of bots with different behaviors on multiple OSNs.
Moreover, it will be challenging to combine this image-based approach with a
graph-based one so as to create an ensamble of valid approaches.

39

Ringraziamenti

I miei primi ringraziamenti devono andare a Mamma e Papà perché è so-
prattuto grazie a loro che sono arrivato dove sono ora. Ed è grazie a loro che
ho potuto avere la possibilità di studiare senza alcuna preoccupazione. Un
ringraziamento speciale va a mia sorella Benedetta e a mio fratello Sebas-
tiano.

Un grande ringraziamento va al professore Angelo Spognardi che mi ha
seguito, consigliato ed aiutato non solo durante questo periodo di tesi.

Infine, ringrazio tutti gli amici di Università, tra cui Andrea, Enrico e
Riccardo; in particolare Andrea con cui ho potuto sviluppare molti progetti
nel corso di questi ultimi due anni.

41

Bibliography

[1] Ali Alhosseini, S., Bin Tareaf, R., Najafi, P., and Meinel, C. Detect
me if you can: Spam bot detection using inductive representation learning. In
Companion Proceedings of The 2019 World Wide Web Conference, WWW ’19,
p. 148–153. Association for Computing Machinery, New York, NY, USA (2019).
ISBN 9781450366755. Available from: https://doi.org/10.1145/3308560.
3316504, doi:10.1145/3308560.3316504.

[2] Andreopoulos, A. and Tsotsos, J. K. 50 years of object recognition:
Directions forward. Computer vision and image understanding, 117 (2013),
827.

[3] Antenore, M., Rodriguez, J. M. C., and Panizzi, E. A comparative study
of bot detection techniques with an application in twitter covid-19 discourse.
Social Science Computer Review, 0 (2022), 08944393211073733. Available
from: https://doi.org/10.1177/08944393211073733, arXiv:https://doi.
org/10.1177/08944393211073733, doi:10.1177/08944393211073733.

[4] Biewald, L. Experiment tracking with weights and biases (2020). Software
available from wandb.com. Available from: https://www.wandb.com/.

[5] Chavoshi, N., Hamooni, H., and Mueen, A. Debot: Twitter bot detection
via warped correlation. In 2016 IEEE 16th International Conference on Data
Mining (ICDM), pp. 817–822 (2016). doi:10.1109/ICDM.2016.0096.

[6] Cresci, S., Lillo, F., Regoli, D., Tardelli, S., and Tesconi, M. $fake:
Evidence of spam and bot activity in stock microblogs on twitter. In ICWSM
(2018).

[7] Cresci, S., Pietro, R. D., Petrocchi, M., Spognardi, A., and Tesconi,
M. The paradigm-shift of social spambots: Evidence, theories, and tools
for the arms race. CoRR, abs/1701.03017 (2017). Available from: http:
//arxiv.org/abs/1701.03017, arXiv:1701.03017.

https://doi.org/10.1145/3308560.3316504
https://doi.org/10.1145/3308560.3316504
http://dx.doi.org/10.1145/3308560.3316504
https://doi.org/10.1177/08944393211073733
http://arxiv.org/abs/https://doi.org/10.1177/08944393211073733
http://arxiv.org/abs/https://doi.org/10.1177/08944393211073733
http://dx.doi.org/10.1177/08944393211073733
https://www.wandb.com/
http://dx.doi.org/10.1109/ICDM.2016.0096
http://arxiv.org/abs/1701.03017
http://arxiv.org/abs/1701.03017
http://arxiv.org/abs/1701.03017

42 Bibliography

[8] Cresci, S., Pietro, R. D., Petrocchi, M., Spognardi, A., and Tesconi,
M. Social fingerprinting: detection of spambot groups through dna-inspired
behavioral modeling. CoRR, abs/1703.04482 (2017). Available from: http:
//arxiv.org/abs/1703.04482, arXiv:1703.04482.

[9] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L.
Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pp. 248–255. Ieee (2009).

[10] Efthimion, P. G., Payne, S., and Proferes, N. Supervised machine
learning bot detection techniques to identify social twitter bots. SMU Data
Science Review, 1 (2018), 5.

[11] Falcon et al., W. Pytorch lightning. GitHub. Note:
https://github.com/PyTorchLightning/pytorch-lightning, 3 (2019).

[12] Feng, S., Wan, H., Wang, N., Li, J., and Luo, M. Twibot-20: A
comprehensive twitter bot detection benchmark. CoRR, abs/2106.13088
(2021). Available from: https://arxiv.org/abs/2106.13088, arXiv:2106.
13088.

[13] Feng, S., et al. Twibot-22: Towards graph-based twitter bot detection (2022).
Available from: https://arxiv.org/abs/2206.04564, doi:10.48550/ARXIV.
2206.04564.

[14] Fukuda, M., Nakajima, K., and Shudo, K. Estimating the bot population
on twitter via random walk based sampling. IEEE Access, 10 (2022), 17201.
doi:10.1109/ACCESS.2022.3149887.

[15] Gilani, Z., Farahbakhsh, R., Tyson, G., Wang, L., and Crowcroft,
J. Of bots and humans (on twitter). In Proceedings of the 2017 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining
2017, pp. 349–354 (2017).

[16] Gilmary, R., Venketesan, A., Praveen, M., Prasath, H. R., and
Vaiyapuri, G. Detection of twitter bots using dna-based entropy technique.
In 2022 First International Conference on Electrical, Electronics, Information
and Communication Technologies (ICEEICT), pp. 1–6 (2022). doi:10.1109/
ICEEICT53079.2022.9768516.

[17] Hayawi, K., Mathew, S. S., Venugopal, N., Masud, M. M., and
Ho, P. Deeprobot: a hybrid deep neural network model for social bot
detection based on user profile data. Soc. Netw. Anal. Min., 12 (2022),

http://arxiv.org/abs/1703.04482
http://arxiv.org/abs/1703.04482
http://arxiv.org/abs/1703.04482
https://arxiv.org/abs/2106.13088
http://arxiv.org/abs/2106.13088
http://arxiv.org/abs/2106.13088
https://arxiv.org/abs/2206.04564
http://dx.doi.org/10.48550/ARXIV.2206.04564
http://dx.doi.org/10.48550/ARXIV.2206.04564
http://dx.doi.org/10.1109/ACCESS.2022.3149887
http://dx.doi.org/10.1109/ICEEICT53079.2022.9768516
http://dx.doi.org/10.1109/ICEEICT53079.2022.9768516

Bibliography 43

43. Available from: https://doi.org/10.1007/s13278-022-00869-w, doi:
10.1007/s13278-022-00869-w.

[18] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for
image recognition. CoRR, abs/1512.03385 (2015). Available from: http:
//arxiv.org/abs/1512.03385, arXiv:1512.03385.

[19] Jeffrey, H. Chaos game representation of gene structure. Nucleic Acids Re-
search, 18 (1990), 2163. Available from: https://doi.org/10.1093/nar/18.
8.2163, arXiv:https://academic.oup.com/nar/article-pdf/18/8/2163/
7059915/18-8-2163.pdf, doi:10.1093/nar/18.8.2163.

[20] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Ima-
genet classification with deep convolutional neural networks. In Ad-
vances in Neural Information Processing Systems (edited by F. Pereira,
C. Burges, L. Bottou, and K. Weinberger), vol. 25. Curran Associates,
Inc. (2012). Available from: https://proceedings.neurips.cc/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[21] Kudugunta, S. and Ferrara, E. Deep neural networks for bot detection.
Information Sciences, 467 (2018), 312. Available from: https://doi.org/10.
1016%2Fj.ins.2018.08.019, doi:10.1016/j.ins.2018.08.019.

[22] Lee, K., Eoff, B., and Caverlee, J. Seven months with the devils: A long-
term study of content polluters on twitter. In Proceedings of the international
AAAI conference on web and social media, vol. 5, pp. 185–192 (2011).

[23] Mazza, M., Cresci, S., Avvenuti, M., Quattrociocchi, W., and
Tesconi, M. Rtbust: Exploiting temporal patterns for botnet detection
on twitter. CoRR, abs/1902.04506 (2019). Available from: http://arxiv.
org/abs/1902.04506, arXiv:1902.04506.

[24] O’Shea, K. and Nash, R. An introduction to convolutional neural networks
(2015). Available from: https://arxiv.org/abs/1511.08458, doi:10.48550/
ARXIV.1511.08458.

[25] Ratner, A., Bach, S. H., Ehrenberg, H. R., Fries, J. A., Wu, S.,
and Ré, C. Snorkel: Rapid training data creation with weak supervision.
CoRR, abs/1711.10160 (2017). Available from: http://arxiv.org/abs/
1711.10160, arXiv:1711.10160.

[26] Shorten, C. and Khoshgoftaar, T. M. A survey on image data augmen-
tation for deep learning. Journal of big data, 6 (2019), 1.

https://doi.org/10.1007/s13278-022-00869-w
http://dx.doi.org/10.1007/s13278-022-00869-w
http://dx.doi.org/10.1007/s13278-022-00869-w
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://doi.org/10.1093/nar/18.8.2163
https://doi.org/10.1093/nar/18.8.2163
http://arxiv.org/abs/https://academic.oup.com/nar/article-pdf/18/8/2163/7059915/18-8-2163.pdf
http://arxiv.org/abs/https://academic.oup.com/nar/article-pdf/18/8/2163/7059915/18-8-2163.pdf
http://dx.doi.org/10.1093/nar/18.8.2163
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1016%2Fj.ins.2018.08.019
https://doi.org/10.1016%2Fj.ins.2018.08.019
http://dx.doi.org/10.1016/j.ins.2018.08.019
http://arxiv.org/abs/1902.04506
http://arxiv.org/abs/1902.04506
http://arxiv.org/abs/1902.04506
https://arxiv.org/abs/1511.08458
http://dx.doi.org/10.48550/ARXIV.1511.08458
http://dx.doi.org/10.48550/ARXIV.1511.08458
http://arxiv.org/abs/1711.10160
http://arxiv.org/abs/1711.10160
http://arxiv.org/abs/1711.10160

44 Bibliography

[27] Simonyan, K. and Zisserman, A. Very deep convolutional networks for
large-scale image recognition. In 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings (edited by Y. Bengio and Y. LeCun) (2015). Available from:
http://arxiv.org/abs/1409.1556.

[28] Somodevilla, M. R. L., Rossainz, M., et al. Dna sequence recognition
using image representation. Research in Computing Science, 148 (2019), 105.

[29] Sun, B., Yang, L., Dong, P., Zhang, W., Dong, J., and Young, C. Super
characters: A conversion from sentiment classification to image classification.
CoRR, abs/1810.07653 (2018). Available from: http://arxiv.org/abs/
1810.07653, arXiv:1810.07653.

[30] Sun, B., Yang, L., Zhang, W., Lin, M., Dong, P., Young, C., and
Dong, J. Supertml: Two-dimensional word embedding and transfer learning
using imagenet pretrained CNN models for the classifications on tabular data.
CoRR, abs/1903.06246 (2019). Available from: http://arxiv.org/abs/
1903.06246, arXiv:1903.06246.

[31] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer vision. CoRR,
abs/1512.00567 (2015). Available from: http://arxiv.org/abs/1512.
00567, arXiv:1512.00567.

[32] Tan, M. and Le, Q. V. Efficientnet: Rethinking model scaling for convo-
lutional neural networks. CoRR, abs/1905.11946 (2019). Available from:
http://arxiv.org/abs/1905.11946, arXiv:1905.11946.

[33] Wei, F. and Nguyen, U. T. Twitter bot detection using bidirectional long
short-term memory neural networks and word embeddings. In 2019 First IEEE
International Conference on Trust, Privacy and Security in Intelligent Systems
and Applications (TPS-ISA), pp. 101–109 (2019). doi:10.1109/TPS-ISA48467.
2019.00021.

[34] Weiss, K., Khoshgoftaar, T. M., and Wang, D. A survey of transfer
learning. Journal of Big data, 3 (2016), 1.

[35] Yang, C., Harkreader, R., and Gu, G. Empirical evaluation and new design
for fighting evolving twitter spammers. IEEE Transactions on Information
Forensics and Security, 8 (2013), 1280. doi:10.1109/TIFS.2013.2267732.

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1810.07653
http://arxiv.org/abs/1810.07653
http://arxiv.org/abs/1810.07653
http://arxiv.org/abs/1903.06246
http://arxiv.org/abs/1903.06246
http://arxiv.org/abs/1903.06246
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946
http://dx.doi.org/10.1109/TPS-ISA48467.2019.00021
http://dx.doi.org/10.1109/TPS-ISA48467.2019.00021
http://dx.doi.org/10.1109/TIFS.2013.2267732

Bibliography 45

[36] Yang, C., Harkreader, R., and Gu, G. Empirical evaluation and new design
for fighting evolving twitter spammers. IEEE Transactions on Information
Forensics and Security, 8 (2013), 1280. doi:10.1109/TIFS.2013.2267732.

[37] Yang, K., Ferrara, E., and Menczer, F. Botometer 101: Social bot
practicum for computational social scientists. CoRR, abs/2201.01608 (2022).
Available from: https://arxiv.org/abs/2201.01608, arXiv:2201.01608.

[38] Yang, Y., Yang, R., Li, Y., Cui, K., Yang, Z., Wang, Y., Xu, J., and
Xie, H. Rosgas: Adaptive social bot detection with reinforced self-supervised
gnn architecture search (2022). Available from: https://arxiv.org/abs/2206.
06757, doi:10.48550/ARXIV.2206.06757.

[39] Yardi, S., Romero, D., Schoenebeck, G., et al. Detecting spam in a
twitter network. First monday, (2010).

[40] Ying, X. An overview of overfitting and its solutions. In Journal of physics:
Conference series, vol. 1168, p. 022022. IOP Publishing (2019).

http://dx.doi.org/10.1109/TIFS.2013.2267732
https://arxiv.org/abs/2201.01608
http://arxiv.org/abs/2201.01608
https://arxiv.org/abs/2206.06757
https://arxiv.org/abs/2206.06757
http://dx.doi.org/10.48550/ARXIV.2206.06757

	Introduction
	Thesis structure

	Related work
	Bot detection
	DNA approaches
	Other approaches

	Images recognition
	Observations

	A novel approach
	Background
	Pre-trained networks
	Images classification for bot detection
	General idea

	Experiments and Results
	Metrics used
	Cresci 2017
	Cresci stock 2018
	Cresci rtbust 2019
	TwiBot20
	Overall results and discussion

	Conclusions
	Ringraziamenti

